Telegram Group & Telegram Channel
Forwarded from Machinelearning
⭐️ The Illustrated DeepSeek-R1

Одно из лучших иллюстрированных объяснение внутренностей DeepSeek-R1.
Читать

⭐️ Видео генератор Pika 2.1 официально выпущен ​​— поддерживает разрешение 1080p и генерирует более согласованные и детализированные на видео.
Попробовать

⭐️ DeepSeek-R1 теперь может работать в 1.58-битном режиме, оставаясь при этом полностью функциональным. Умельцы из Unsloth AI уменьшили размер модели 671B с 720 ГБ до 131 ГБ - это на 80 % меньше.

Наивное квантование всех слоев полностью ломает модель, вызывая бесконечные циклы и тарабарщину на выходе. Их динамические кванты решают эту проблему.

1,58-битный квант помещается в 160 ГБ VRAM (2x H100 80 ГБ) для быстрого вывода со скоростью ~140 токенов/сек.

Изучив архитектуру DeepSeek-R1, разработчики выборочно квантовали определенные слои в более высокие биты (например, в 4-битные), а большинство слоев MoE оставили в 1,5 бита.
Бенчмарки + блог
GGUF (131-212 ГБ) на Hugging Face:

⭐️ YuE (乐) - новая мощная модель генерации музыки с открытым исходным кодом! 🎵 Поддерживает преобразования текста в песню (как Suno.ai) с поддержкой различных жанров, вокала и множества языков. Модель совместима с Hugging Face и LLAMA.
Код
Демо

⭐️ Qwen 2.5-VL – обновленная визуальная модель, доступная в трех размерах: 3B, 7B и 72B параметров.
Qwen-2.5-VL
Qwen-2.5-1M


⭐️Netflix выпустили Go-with-the-Flow
Netflix выпустили новый алгоритм искажения шума для генерации видео, достаточно быстрый, чтобы работать в реальном времени, который заменяет случайную временную гауссиану на коррелированный искаженный шум, полученный из полей оптического потока, который сохраняет при этом пространственную гауссиану. Эффективность алгоритма позволяет тонко настраивать современные модели диффузии видео с минимальными расходами и предоставляет универсальное решение для широкого спектра управления движением на видео. Обширные эксперименты и исследования демонстрируют преимущества метода, делая его надежным и масштабируемым подходом для управления движением в диффузионных моделях видео.
HF
Github

⭐️ «Awesome DL-Based MRI Reconstruction» - новый Awesome репозиторий, содержащий ресурсы, инструменты и научные статьи, посвященные использованию глубокого обучения для ускорения получения магнитно-резонансных изображений. Созданный для обмена знаниями и сотрудничества, он служит важным руководством для исследователей и медиков со всего мира.
Github

@ai_machinelearning_big_data


#ai #ml #news #llm #deepseek #Netflix #Qwen #Pika #news #ainews
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1490
Create:
Last Update:

⭐️ The Illustrated DeepSeek-R1

Одно из лучших иллюстрированных объяснение внутренностей DeepSeek-R1.
Читать

⭐️ Видео генератор Pika 2.1 официально выпущен ​​— поддерживает разрешение 1080p и генерирует более согласованные и детализированные на видео.
Попробовать

⭐️ DeepSeek-R1 теперь может работать в 1.58-битном режиме, оставаясь при этом полностью функциональным. Умельцы из Unsloth AI уменьшили размер модели 671B с 720 ГБ до 131 ГБ - это на 80 % меньше.

Наивное квантование всех слоев полностью ломает модель, вызывая бесконечные циклы и тарабарщину на выходе. Их динамические кванты решают эту проблему.

1,58-битный квант помещается в 160 ГБ VRAM (2x H100 80 ГБ) для быстрого вывода со скоростью ~140 токенов/сек.

Изучив архитектуру DeepSeek-R1, разработчики выборочно квантовали определенные слои в более высокие биты (например, в 4-битные), а большинство слоев MoE оставили в 1,5 бита.
Бенчмарки + блог
GGUF (131-212 ГБ) на Hugging Face:

⭐️ YuE (乐) - новая мощная модель генерации музыки с открытым исходным кодом! 🎵 Поддерживает преобразования текста в песню (как Suno.ai) с поддержкой различных жанров, вокала и множества языков. Модель совместима с Hugging Face и LLAMA.
Код
Демо

⭐️ Qwen 2.5-VL – обновленная визуальная модель, доступная в трех размерах: 3B, 7B и 72B параметров.
Qwen-2.5-VL
Qwen-2.5-1M


⭐️Netflix выпустили Go-with-the-Flow
Netflix выпустили новый алгоритм искажения шума для генерации видео, достаточно быстрый, чтобы работать в реальном времени, который заменяет случайную временную гауссиану на коррелированный искаженный шум, полученный из полей оптического потока, который сохраняет при этом пространственную гауссиану. Эффективность алгоритма позволяет тонко настраивать современные модели диффузии видео с минимальными расходами и предоставляет универсальное решение для широкого спектра управления движением на видео. Обширные эксперименты и исследования демонстрируют преимущества метода, делая его надежным и масштабируемым подходом для управления движением в диффузионных моделях видео.
HF
Github

⭐️ «Awesome DL-Based MRI Reconstruction» - новый Awesome репозиторий, содержащий ресурсы, инструменты и научные статьи, посвященные использованию глубокого обучения для ускорения получения магнитно-резонансных изображений. Созданный для обмена знаниями и сотрудничества, он служит важным руководством для исследователей и медиков со всего мира.
Github

@ai_machinelearning_big_data


#ai #ml #news #llm #deepseek #Netflix #Qwen #Pika #news #ainews

BY Machine learning Interview







Share with your friend now:
tg-me.com/machinelearning_interview/1490

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Machine learning Interview from ye


Telegram Machine learning Interview
FROM USA